Autumn Sherman (Class of 2023) is majoring in mathematics, and performance and communication arts. She plans to have mathematics as her primary major. Her fellowship project is on the crossing numbers of graphs, a newer research area within graph theory. She enjoys the study of theoretical mathematics. She plans, with...
Advisor
Support
Sponsoring Department:
Series:
Semester:
Summer 2020
Description
During my fellowship, I studied crossing numbers of graphs, which are the number of times edges in a graph cross in a drawing of that graph. This idea was first worked on in 1944 by Paul Turán and one way it is applied is to plan roads in a city or rails in a storage yard. Most crossing number work done has been with complete (Anthony Hill) or complete bipartite (Kazimierz Zarankiewitz) graphs. I mainly worked with the crossing number of the generalized hypercube graph, focusing on the rectilinear crossing number. The crossing number of the generalized hypercube graph has been worked on very minimally and in this paper, I took several approaches at finding an upper bound for the rectilinear crossing number.